muzi-8


  • 首页

  • 关于

  • 标签

  • 分类

  • 归档

  • Photos

未命名

发表于 2018-07-31

PYTORCH 系列教程(一)

Author:muzi

<center>201_torch_numpy</center>

  1. 将numpy数组转换为张量,或者张量转换为数组
    (convert numpy to tensor or vise versa 反之亦然)

    code
    import torch
    import numpy as np
    np_data = np.arange(6).reshape((2, 3))
    print np_data
    torch_data = torch.from_numpy(np_data)
    print torch_data
    tensor2array = torch_data.numpy()
    print tensor2array
    结果:

    [[0 1 2]
    [3 4 5]]

    0 1 2
    3 4 5
    [torch.LongTensor of size 2x3]

    [[0 1 2]
    [3 4 5]]

  2. 元素取绝对值

    code
    data = [-1, -2, 1, 2]
    print data
    tensor = torch.FloatTensor(data)
    print tensor
    print np.abs(data)
    print torch.abs(tensor)
    结果:

    [-1, -2, 1, 2]

    -1
    -2
    1
    2
    [torch.FloatTensor of size 4]

    [1 2 1 2]

    1
    2
    1
    2
    [torch.FloatTensor of size 4]

  3. 元素取sin值

    code
    print np.sin(data)
    print torch.sin(tensor)
    结果:

    [-0.84147098 -0.90929743 0.84147098 0.90929743]

    -0.8415
    -0.9093
    0.8415
    0.9093
    [torch.FloatTensor of size 4]

  4. 张量元素取sigmoid值

    code
    print tensor.sigmoid()
    结果

    0.2689
    0.1192
    0.7311
    0.8808
    [torch.FloatTensor of size 4]

  5. 张量元素取指数值

    code
    print tensor.exp()
    结果:

    0.3679
    0.1353
    2.7183
    7.3891
    [torch.FloatTensor of size 4]

  6. 元素取平均值

    code
    print np.mean(data)
    print torch.mean(tensor)
    结果:

    0.0
    0.0
    7.列表,张量的矩阵运算

    data = [[1,2], [3,4]]
    print data
    print type(data)
    tensor = torch.FloatTensor(data)
    print np.matmul(data,data)
    print type(np.matmul(data,data))
    print torch.mm(tensor,tensor)
    结果:

    [[1, 2], [3, 4]]

    数据类型是list,可以通过matmul计算list的矩阵运算。

    [[ 7 10]
    [15 22]]

    7 10
    15 22
    [torch.FloatTensor of size 2x2]

  7. 数组的矩阵乘法操作;张量的內积运算

    code
    data = np.array(data)
    print data
    print type(data) #数据类型是数组,可以通过dot操作计算矩阵运算
    print data.dot(data)
    tensor = torch.FloatTensor(data)
    print tensor
    #print tensor.dot(tensor) #不正确的操作,因为维度不匹配
    data1 = [1,2,3,4]
    print type(data1)
    print type(data1)
    tensor = torch.FloatTensor(data1)
    print tensor
    print tensor.dot(tensor) #正确的操作 进行內积运算
    结果:

    [[1 2]
    [3 4]]

    [[ 7 10]
    [15 22]]

    1 2
    3 4
    [torch.FloatTensor of size 2x2]

    [1, 2, 3, 4]

    1
    2
    3
    4
    [torch.FloatTensor of size 4]

    30.0

  8. 张量对应元素相乘

    data =[[1,2],[3,4]]
    print data
    print type(data)
    data = np.array(data)
    print data # 数据类型:列表与数组区别
    print type(data)
    tensor = torch.FloatTensor(data)
    print tensor.mm(tensor)
    print tensor*tensor # 张量元素的对应乘积
    data1 = np.arange(1,5)
    data2 = np.array([1,2,3,4]) # 两种方式 产生(n,)的数组
    print data1
    print data2
    print type(data1)
    print data1.shape
    tensor_1D = torch.FloatTensor(data1)
    tensor_1D_ = torch.from_numpy(data2) #两种方式 将(n,)的数组转换为 1-D张量
    print tensor_1D
    print tensor_1D.dot(tensor_1D) # 1-D张量类型数据的內积:对应元素相乘求和
    结果:

    [[1, 2], [3, 4]]

    [[1 2]
    [3 4]]
    #列表与数组的区别

    7 10
    15 22
    [torch.FloatTensor of size 2x2] #张量矩阵乘法

  1   4
  9  16
[torch.FloatTensor of size 2x2]  #张量对应元素相乘

[1 2 3 4]
[1 2 3 4]
<type 'numpy.ndarray'>
(4,)

 1
 2
 3
 4
[torch.FloatTensor of size 4]

<class 'torch.FloatTensor'>
30.0

Reference :
莫烦:pytorch教程

Hello World

发表于 2018-07-31

Welcome to Hexo! This is your very first post. Check documentation for more info. If you get any problems when using Hexo, you can find the answer in troubleshooting or you can ask me on GitHub.

Quick Start

Create a new post

1
$ hexo new "My New Post"

More info: Writing

Run server

1
$ hexo server

More info: Server

Generate static files

1
$ hexo generate

More info: Generating

Deploy to remote sites

1
$ hexo deploy

More info: Deployment

Generative Adversarial Networks

发表于 2016-11-27


阅读全文 »
12
muzi

muzi

路漫漫其修远兮,我将上下而求索;铁肩担道义,妙手著文章

13 日志
6 分类
8 标签
RSS
GitHub 知乎 豆瓣 微博 简书
友情链接
  • 可视化“张迪”
  • 在路上-张宏伦(上交直博)
  • 小土刀
  • 中南大学赵颖
  • 北邮陈光(简书)
  • 云龙(全栈)
  • 阮一峰的网络日志
  • 狗皮膏药
© 2019 muzi
由 Hexo 强力驱动
|
主题 — NexT.Mist v5.1.3